Welcome to visit Zhongnan Medical Journal Press Series journal website!

Progress in research into exosomes in breast cancer microenvironment

Published on May. 18, 2021Total Views: 5533 timesTotal Downloads: 1406 timesDownloadMobile

Author: Kang-Di LI 1, 2 Wen-Hua LI 1, 2

Affiliation: 1. College of Life Sciences, Wuhan University, Wuhan 430072, China 2. Hubei Key Laboratory of Cell Homeostasis, Wuhan 430072, China

Keywords: Breast cancer Tumor microenvironment Exosomes

DOI: 10.12173/j.issn.1004-5511.202009026

Reference: Li KD, Li WH. Progress in research into exosomes in breast cancer microenvironment[J]. Yixue Xinzhi Zazhi, 2021, 31(3): 197-203. DOI: 10.12173/j.issn.1004-5511.202009026.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Breast cancer is a major disease affecting women's health. The tumor microenvironment is a complex and dynamically changing group of cells and non-cellular components involved in the process of tumor progression. At present, more and more evidence indicates that exosomes in the breast cancer microenvironment can participate in the occurrence, development and prognosis of breast cancer by regulating the proliferation, epithelial mesenchymal transformation, metabolism, stemness and drug resistance of breast cancer cells. Starting with the structure of the human breast, this paper summarizes a series of advances in knowledge about exosomes in the breast cancer microenvironment, focusing on their regulatory role in breast cancer and their molecular mechanisms, thus providing new ideas for the diagnosis and treatment of breast cancer.

Full-text
Please download the PDF version to read the full text: download
References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.

2. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-322. DOI: 10.1016/j.ccr.2012.02.022.

3. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease[J]. Nat Rev Cancer, 2009, 9(9): 665-674. DOI: 10.1038/nrc2714.

4. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11): 1423-1437. DOI: 10.1038/nm.3394.

5. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise[J]. Cell, 2010, 140(4): 460-476. DOI: 10.1016/j.cell.2010.01.045.

6. Barcus CE, O'Leary KA, Brockman JL, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells[J]. Breast Cancer Res, 2017, 19(1): 9. DOI: 10.1186/s13058-017-0801-1.

7. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11): 1423-1437. DOI: 10.1038/nm.3394.

8. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines[J]. Physiol Rev, 2003, 83(3): 835-870. DOI: 10.1152/physrev.2003.83.3.835.

9. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch[J]. Nat Rev Cancer, 2003, 3(6): 401-410. DOI: 10.1038/nrc1093.

10.    Mueller MM, Fusenig NE. Friends or foes-bipolar effects of the tumour stroma in cancer[J]. Nat Rev Cancer, 2004, 4(11): 839-849. DOI: 10.1038/nrc1477.

11.    Valenti G, Quinn HM, Heynen GJ, et al. Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors[J]. Cancer Res. 2017, 77(8): 2134-2147. DOI: 10.1158/0008-5472.CAN-15-3490.

12.    Scheel C, Eaton EN, Li SH, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast[J]. Cell, 2011, 145(6): 926-940. DOI: 10.1016/j.cell.2011.04.029.

13.    Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment[J]. Trends Cell Biol. 2017, 27(11): 863-875. DOI: 10.1016/j.tcb.2017.06.003.

14.    Maia J, Caja S, Strano Moraes MC, et al. Exosomebased cell-cell communication in the tumor microenvironment[J]. Front Cell Dev Biol, 2018, 6: 18. DOI: 10.3389/fcell.2018. 00018.

15.    Mao Y, Keller ET, Garfield DH, et al. Stromal cells in tumor microenvironment and breast cancer[J]. Cancer Metastasis Rev, 2013, (1-2): 303-315. DOI: 10.1007/s10555-012-9415-3.

16.    György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles[J]. Cell Mol Life Sci, 2011, 68(16): 2667-2688. DOI: 10.1007/s00018-011-0689-3.

17.    Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-593. DOI: 10.1038/nri2567.

18.    Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science. 2020, 367(6478):eaau6977. DOI: 10.1126/science.aau6977.

19.    Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. DOI: 10.1038/s41556-018-0250-9.

20.    Bobrie A, Krumeich S, Reyal F, et al. Rab27a supports exosome-dependent and-independent mechanisms that modify the tumor microenvironment and can promote tumor progression[J]. Cancer Res, 2012, 72(19): 4920-4930. DOI: 10.1158/0008-5472.CAN-12-0925.

21. Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 1-35. DOI: 10.1038/s41392-020-0110-5.

22.    Greening D W, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods[J]. Methods Mol Biol, 2015, 1295: 179-209. DOI: 10. 1007/978-1-4939-2550-6_15.

23.    Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes[J]. J Cell Biol, 1983, 97(2): 329-339. DOI: 10.1083/jcb.97.2.329.

24.    Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J]. J Cell Biol, 1985, 101(3): 942-948. DOI: 10.1083/jcb.101.3.942.

25.    Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med, 2001, 7(3): 297-303. DOI: 10.1038/85438.

26.    Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183(3):1161-1172. DOI: 10.1084/jem.183.3.1161.

27.    Shimaoka M, Kawamoto E, Gaowa A, et al. Connexins and integrins in exosomes[J]. Cancers, 2019, 11(1):106. DOI: 10.3390/cancers11010106.

28.    Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232. DOI: 10.1016/j.cell.2016.01. 043.

29.    Hoshino D, Kirkbride Kellye C, Costello K, et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior[J]. Cell Rep, 2013, 5(5): 1159-1168. DOI: 10.1016/j.celrep.2013.10.050.

30.    Sung BH, Ketova T, Hoshino D, et al. Directional cell movement through tissues is controlled by exosome secretion[J]. Nat Commun, 2015, 6: 7164. DOI: 10.1038/ncomms8164.

31.    Zhou W, Fong Miranda Y, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell, 2014, 25(4): 501-515. DOI: 10.1016/j.ccr.2014.03.007.

32.    Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335. DOI: 10.1038/nature 15756.

33.    Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion[J]. Nat Rev Immunol. 2020, 20(4): 209-215. DOI: 10.1038/s41577-019-0264-y.

34.    Chen Y, Zeng C, Zhan Y, et al. Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b[J]. Oncogene, 2017, 36(33): 4692-4705. DOI: 10.1038/onc.2017.100.

35.    Li K, Liu T, Chen J, et al. Survivin in breast cancer-derived exosomes activates fibroblasts by up-regulating SOD1, whose feedback promotes cancer proliferation and metastasis[J]. J Biol Chem, 2020, 295(40): 13737-13752. DOI: 10.1074/jbc.RA120.013805.

36.    Singh R, Pochampally R, Watabe K, et al. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer[J]. Mol Cancer, 2014, 13: 256. DOI: 10.1186/1476-4598-13-256.

37.    Dioufa N, Clark AM, Ma B, et al. Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells[J]. Mol Cancer, 2017, 16(1): 172. DOI: 10.1186/s12943-017-0740-6.

38.    Fong MY, Zhou W, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis[J]. Nat Cell Biol, 2015, 17(2): 183-194. DOI: 10.1038/ncb3094.

39.    Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8(2): 98-101. 

40.    Naseri Z, Oskuee RK, Jaafari MR, et al. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. International[J]. Int J Nanomedicine, 2018, 13: 7727-7747. DOI: 10.2147/IJN.S182384.

41.    Williams Z, Ben-Dov IZ, Elias R, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations[J]. Proc Natl Acad Sci U S A, 2013, 110(11): 4255-4260. DOI 10.1073/pnas.1214046110.

42.    Li P, Kaslan M, Lee SH, et al. Progress in exosome isolation techniques[J]. Theranostics, 2017, 7(3): 789-804. DOI: 10.7150/thno.18133.

43.    Akçakaya P, Ekelund S, Kolosenko I, et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer[J]. Int J Oncol, 2011, 39(2): 311-318. DOI: 10.3892/ijo.2011.1043.

44.    Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673. DOI: 10.1016/j.cmet.2019.07.011.

45.    El Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5): 347-357. DOI: 10.1038/nrd3978.