HomeArticlesNew OnlineDetail

Physiological mechanism and application progress of blood flow restriction training

Update: Jul. 27, 2022Total Views: 1220 timesTotal Downloads: 511 timesDownloadMobile
  • Abstract
  • Full-text
  • References

As a new, safe and effective rehabilitation method, blood flow restriction training (BFRT) can improve the physical function of users. Compared with simple resistance training method, BFRT has advantages of low intensity, good efficacy and high compliance, so it is suitable for most people to use. The physiological mechanism of BFRT has not been fully elucidated, and there are four mainstream hypotheses, each with its own characteristics. We review the mechanism of action, application progress of BFRT, and provide a theoretical and practical basis for the promotion. 

Please download the PDF version to read the full text: download

1.Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people[J]. Age Ageing, 2010, 39(4): 412-423. DOI: 10.1093/ageing/afq034.

2.Garber CE, Blissmer B, Deschenes MR, et al. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise[J]. Med Sci Sports Exerc, 2011, 43(7): 1334-1359. DOI: 10.1249/MSS.0b013e318213fefb.

3.魏佳, 李博, 杨威, 等. 血流限制训练的应用效果与作用机制[J]. 体育科学, 2019, 39(4): 71-80. [Wei J, Li B, Yang W, et al. Application effect and mechanism of blood flow restriction training[J]. China Sport Science, 2019, 39(4): 71-80.] DOI: 10.16469/j.css.201904008.

4.Kim J, Lang JA, Pilania N, et al. Effects of blood flow restricted exercise training on muscular strength and blood flow in older adults[J]. Exp Gerontol, 2017, 99: 127-132. DOI: 10.1016/j.exger.2017.09.016.

5.Yasuda T, Fukumura K, Fukuda T, et al. Effects of low-intensity, elastic band resistance exercise combined with blood flow restriction on muscle activation[J]. Scand J Med Sci Sports, 2014, 24(1): 55-61. DOI: 10.1111/j.1600-0838.2012.01489.x.

6.Teixeira EL, Barroso R, Silva-Batista C, et al. Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise[J]. Muscle Nerve, 2018, 57(1): 107-111. DOI: 10.1002/mus.25616.

7.Jessee MB, Mouser JG, Buckner SL, et al. Effects of load on the acute response of muscles proximal and distal to blood flow restriction[J]. J Physiol Sci, 2018, 68(6): 769-779. DOI: 10.1007/s12576-018-0593-9.

8.Gundermann DM, Walker DK, Reidy PT, et al. Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin[J]. Am J Physiol Endocrinol Metab, 2014, 306(10): E1198-E1204. DOI: 10.1152/ajpendo.00600. 2013.

9.McDonagh MJ, Davies CT. Adaptive response of mammalian skeletal muscle to exercise with high loads[J]. Eur J Appl Physiol Occup Physiol, 1984, 52(2): 139-155. DOI: 10.1007/BF00433384.

10.Yasuda T, Abe T, Sato Y, et al. Muscle fiber cross-sectional area is increased after two weeks of twice daily KAATSU-resistance training[J]. International Journal of Kaatsu Training Research, 2005, 1(2): 65-70. DOI: 10.3806/ijktr.1.65.

11.Hayashi AA, Proud CG. The rapid activation of protein synthesis by growth hormone requires signaling through mTOR[J]. Am J Physiol Endocrinol Metab, 2007, 292(6): E1647-E1655. DOI: 10.1152/ajpendo.00674.2006.

12.Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men[J]. J Appl Physiol (1985), 2010, 108(5): 1199-1209. DOI: 10.1152/jappl physiol.01266.2009.

13.Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis[J]. J Appl Physiol (1985), 2007, 103(3): 903-910. DOI: 10.1152/japplphysiol.00195.2007.

14.Giles L, Webster KE, McClelland J, et al. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial[J]. Br J Sports Med, 2017, 51(23): 1688-1694. DOI: 10.1136/bjsports-2016-096329.

15.Scott BR, Loenneke JP, Slattery KM, et al. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development[J]. Sports Med, 2015, 45(3): 313-325. DOI: 10.1007/s40279-014-0288-1.

16.Laurentino GC, Ugrinowitsch C, Roschel H, et al. Strength training with blood flow restriction diminishes myostatin gene expression[J]. Med Sci Sports Exerc, 2012, 44(3): 406-412. DOI: 10.1249/MSS.0b013e318233b4bc.

17.Loenneke JP, Fahs CA, Rossow LM, et al. Blood flow restriction pressure recommendations: a tale of two cuffs[J]. Front Physiol, 2013, 4: 249. DOI: 10.3389/fphys.2013. 00249.

18.Ozaki H, Yasuda T, Ogasawara R, et al. Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions[J]. Eur J Appl Physiol, 2013, 113(1): 167-174. DOI: 10.1007/s00421-012-2422-9.

19.Wilson JM, Lowery RP, Joy JM, et al. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage[J]. J Strength Cond Res, 2013, 27(11): 3068-3075. DOI: 10.1519/JSC.0b013e31828a1ffa.

20.李新通, 潘玮敏, 覃华生, 等. 血流限制训练: 加速肌肉骨骼康复的新方法[J]. 中国组织工程研究, 2019, 23(15): 2415-2420. [Li XT, Pan WM, Qin HS, et al. Blood flow restriction training: a novel approach for accelerating musculoskeletal rehabilitation[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(15): 2415-2420.] DOI: 10.3969/j.issn.2095-4344.1142.

21.Faltus J, Owens J, Hedt C. Theoretial applications of blood flow restriction training in managing chronic ankle instability in the basketball athlete[J]. Int J Sports Phys Ther, 2018, 13(3): 552-560. DOI: 10.1249/MSS. 0b013e318233b4bc.

22.赵静, 尹练, 雷雪梅, 等. 加压训练对中老年人肌肉适能的影响与优势[J]. 中国组织工程研究,2020, 24(23): 3737-3743. [Zhao J, Yin L, Lei XM, et al. KAASTU training for muscle fitness in the middle-aged and elderly adults: effects and strengths[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(23): 3737-3743.] DOI: 10.3969/j.issn.2095-4344.2690.

23.Renzi CP, Tanaka H, Sugawara J. Effects of leg blood flow restriction during walking on cardiovascular function[J]. Med Sci Sports Exerc, 2010, 42(4): 726-732. DOI: 10.1249/MSS.0b013e3181bdb454.

24.Yasuda T, Ogasawara R, Sakamaki M, et al. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size[J]. Eur J Appl Physiol, 2011, 111(10): 2525-2533. DOI: 10.1007/s00421-011-1873-8.

25.Lowery RP, Joy JM, Loenneke JP, et al. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme[J]. Clin Physiol Funct Imaging, 2014, 34(4): 317-321. DOI: 10.1111/cpf.12099.

26.Stewart IB, Moghadam P, Borg DN, et al. Thermal infrared imaging can differentiate skin temperature changes associated with intense single leg exercise, but not with delayed onset of muscle soreness[J]. J Sports Sci Med, 2020, 19(3): 469-477. DOI: 10.3969/j.issn.2095-4344. 2690.

27.Ozaki H, Yasuda T, Ogasawara R, et al. Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions[J]. Eur J Appl Physiol, 2013, 113(1): 167-174. DOI: 10.1007/s00421-012-2422-9.

28.de Freitas MC, Gerosa-Neto J, Zanchi NE, et al. Role of metabolic stress for enhancing muscle adaptations: practical applications[J]. World J Methodol, 2017, 7(2): 46-54. DOI: 10.5662/wjm.v7.i2.46.

29.徐飞, 王健. 加压力量训练: 释义及应用[J]. 体育科学,2013, 33(12): 71-80. [Xu F, Wang J. KAATSU training: interpretation and applications[J]. China Sport Science, 2013, 33(12): 71-80.] DOI: 10.3969/j.issn.1000-677X.2013.12.014.