HomeArticlesNew OnlineDetail

The role of lncRNA and miRNA in the pathogenesis of renal fibrosis

Update: Sep. 30, 2022Total Views: 616 timesTotal Downloads: 287 timesDownloadMobile

Author: Liang CHANG 1 Yu-Ming LI 2 Jin-Peng HU 2

Affiliation: 1. Department of Nephrology, Tianjin Fourth Central Hospital, Tianjin 300140, China 2. Research Department of Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300162 , China

Keywords: Renal fibrosis LncRNA MiRNA

DOI: 10.12173/j.issn.1004-5511.202206010

  • Abstract
  • Full-text
  • References
Abstract

Renal fibrosis (RF) is a common pathological process leading to end-stage renal failure in chronic kidney disease, with a complex molecular mechanism. Long non-coding RNA (lncRNA) and microRNA (miRNA) are the main non-coding RNAs, affecting disease processes, cellular homeostasis and development through a variety of mechanisms. An increasing number of studies show that lncRNA and miRNA have high application value as biomarkers for RF, including the treatment of renal fibrosis disease based on these and the early detection of renal fibrosis disease. Therefore, this paper reviews the research progress of lncRNA, miRNA and their interaction in RF.

Full-text
Please download the PDF version to read the full text: download
References

1.Liang S, Wu YS, Li DY, et al. Autophagy and renal fibrosis[J]. Aging Dis, 2022, 13(3): 712-731. DOI: 10.143 36/ad.2021.1027.

2.冯敏, 曾红惠, 廖伟棠, 等. 顺铂诱导的小鼠肾间质纤维化模型中存在补体活化[J]. 中华肾脏病杂志, 2021, 37(10): 809-816. [Feng M, Zeng HH, Liao WT, et al. Complement activation in a mouse model of cisplatin-induced renal interstitial fibrosis[J]. Chinese Journal of Nephrology, 2021, 37(10): 809-816.] DOI: 10.3760/cma.j.cn441217-20210414-00120.

3.Budu A, Freitas-Lima LC, Arruda AC, et al. Renal fibrosis due to multiple cisplatin treatment is exacerbated by kinin B1 receptor antagonism[J]. Braz J Med Biol Res, 2021, 54(12): e11353. DOI: 10.1590/1414-431X2021e11353.

4.Tanwar VS, Reddy MA, Natarajan R. Emerging role of long non-coding RNAs in diabetic vascular complications[J]. Front Endocrinol (Lausanne), 2021, 12: 665811. DOI: 10.3389/fendo.2021.665811.

5.Yanai K, Kaneko S, Ishii H, et al. MicroRNA expression profiling in age-dependent renal impairment[J]. Front Med (Lausanne), 2022, 9: 849075. DOI: 10.3389/fmed. 2022.849075.

6.Mercer TR, Munro T, Mattick JS. The potential of long noncoding RNA therapies[J]. Trends Pharmacol Sci, 2022, 43(4): 269-280. DOI: 10.1016/j.tips.2022.01.008.

7.Onoguchi-Mizutani R, Akimitsu N. Long noncoding RNA and phase separation in cellular stress response[J]. J Biochem, 2022, 171(3): 269-276. DOI: 10.1093/jb/mvab156.

8.Wang YN, Yang CE, Zhang DD, et al. Long non-coding RNAs: a double-edged sword in aging kidney and renal disease[J]. Chem Biol Interact, 2021, 337: 109396. DOI: 10.1016/j.cbi.2021.109396.

9.Liu DW, Zhang JH, Liu FX, et al. Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1[J]. Exp Mol Med, 2019, 51(8): 1-15. DOI: 10.103 8/s12276-019-0259-6.

10.Lin J, Jiang Z, Liu C, et al. Emerging roles of long non-coding RNAs in renal fibrosis[J]. Life (Basel), 2020, 10(8): 131. DOI: 10.3390/life10080131. 

11.Huang H, Zhang G, Ge Z. lncRNA MALAT1 promotes renal fibrosis in diabetic nephropathy by targeting the miR-2355-3p/IL6ST axis[J]. Front Pharmacol, 2021, 12: 647650. DOI: 10.3389/fphar.2021.647650.

12.Han R, Hu S, Qin W, et al. Upregulated long noncoding RNA LOC105375913 induces tubulointerstitial fibrosis in focal segmental glomerulosclerosis[J]. Sci Rep, 2019, 9(1): 716. DOI: 10.1038/s41598-018-36902-2.

13.单美玲, 石丽君. 肾纤维化进程中的关键信号通路研究进展[J]. 生命科学, 2021, 33(9): 1177-1187. [Shan ML, Shi LJ. Advances in research on the pivotal signaling pathways in renal fibrosis[J]. Chinese Bulletin of Life Sciences, 2021, 33(9): 1177-1187.] DOI: 10.13376/j.cbls/20210130.

14.Wu W, Wang X, Yu X, et al. Smad3 Signatures in renal inflammation and fibrosis[J]. Int J Biol Sci, 2022, 18(7): 2795-2806. DOI: 10.7150/ijbs.71595.

15.Zhang P, Yu C, Yu J, et al. Arid2-IR promotes NF-κB-mediated renal inflammation by targeting NLRC5 transcription[J]. Cell Mol Life Sci, 2021, 78(5): 2387-2404. DOI: 10.1007/s00018-020-03659-9.

16.Yang YL, Hu F, Xue M, et al. Early growth response protein-1 upregulates long noncoding RNA Arid2-IR to promote extracellular matrix production in diabetic kidney disease[J]. Am J Physiol Cell Physiol, 2019, 316(3): C340-C352. DOI: 10.1152/ajpcell.00167.2018.

17.Wang P, Luo ML, Song E, et al. Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway[J]. Sci Transl Med, 2018, 10(462): eaat2039. DOI: 10.1126/scitranslmed.aat2039.

18.Zhang YY, Tan RZ, Yu Y, et al. LncRNA GAS5 protects against TGF-β-induced renal fibrosis via the Smad3/miRNA-142-5p axis[J]. Am J Physiol Renal Physiol, 2021, 321(4): F517-F526. DOI: 10.1152/ajprenal.00085.2021.

19.Meng Q, Zhai X, Yuan Y, et al. lncRNA ZEB1-AS1 inhibits high glucose-induced EMT and fibrogenesis by regulating the miR-216a-5p/BMP7 axis in diabetic nephropathy[J]. Braz J Med Biol Res, 2020, 53(4): e9288. DOI: 10.1590/1414-431x20209288.

20.Xiao X, Yuan Q, Chen Y, et al. LncRNA ENST00000 453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis[J]. J Cell Physiol, 2019, 234(6): 9130-9143. DOI: 10.1002/jcp.27590.

21.Xue R, Li Y, Li X, et al. miR-185 affected the EMT, cell viability, and proliferation via DNMT1/MEG3 pathway in TGF-β1-induced renal fibrosis[J]. Cell Biol Int, 2019, 43(10): 1152-1162. DOI: 10.1002/cbin.11046.

22.Li X, Dong ZQ, Chang H, et al. Screening and identification of key microRNAs and regulatory pathways associated with the renal fibrosis process[J].  Mol Omics, 2022, 18(6): 520-533. DOI: 10.1039/d1mo00498k.

23.Petzuch B, Bénardeau A, Hofmeister L, et al. Urinary miRNA profiles in chronic kidney injury-benefits of extracellular vesicle enrichment and miRNAs as potential biomarkers for renal fibrosis, glomerular injury, and endothelial dysfunction[J]. Mol Omics, 2022, 187(1): 35-50. DOI: 10.1093/toxsci/kfac028.

24.Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation[J]. Asian Pac J Allergy Immunol, 2022, 40(1): 94-102. DOI: 10.12932/ap-101019-0656.

25.Hennino MF, Buob D, Van der Hauwaert C, et al. miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy[J]. Sci Rep, 2016, 6: 27209. DOI: 10.1038/srep27209.

26.Song J, Zhao L, Li Y. Comprehensive bioinformatics analysis of mRNA expression profiles and identification of a miRNA-mRNA network associated with lupus nephritis[J]. Lupus, 2020, 29(8): 854-861. DOI: 10.1177/ 0961203320925155.

27.Xu Y, He Y, Hu H, et al. The increased miRNA-150-5p expression of the tonsil tissue in patients with IgA nephropathy may be related to the pathogenesis of disease[J]. Int Immunopharmacol, 2021, 100: 108124. DOI: 10.1016/j.intimp.2021.108124. 

28.Wei SY, Guo S, Feng B, et al. Identification of miRNA-mRNA network and immune-related gene signatures in IgA nephropathy by integrated bioinformatics analysis[J]. BMC Nephrol, 2021, 22(1): 392. DOI: 10.1186/s12882-021-02606-5.

29.Qin W, Chung AC, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29[J]. J Am Soc Nephrol, 2011, 22(8): 1462-1474. DOI: 10.1681/asn.2010121308.

30.Zhou X, Zhao S, Li W, et al. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo[J]. Int J Biol Sci, 2021, 17(14): 4021-4033. DOI: 10.7150/ijbs.62478.

31.Huang P, Gu XJ, Huang MY, et al. Down-regulation of LINC00667 hinders renal tubular epithelial cell apoptosis and fibrosis through miR-34c[J]. Clin Transl Oncol, 2021, 23(3): 572-581. DOI: 10.1007/s12094-020-02451-2.

32.Panizo S, Martínez-Arias L, Alonso-Montes C, et al. Fibrosis in chronic kidney disease: pathogenesis and consequences[J]. Int J Mol Sci, 2021, 22(1): 408. DOI: 10.3390/ijms 22010408.

33.Wu H, Kong L, Tan Y, et al. C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21[J]. Diabetologia, 2016, 59(7): 1558-1568. DOI: 10.1007/s00125-016-3958-8.

34.Sun W, Min B, Du D, et al. miR-181c protects CsA-induced renal damage and fibrosis through inhibiting EMT[J]. FEBS Lett, 2017, 591(21): 3588-3599. DOI: 10.1002/1873-3468.12872.

35.Wu X, Ding X, Ding Z, et al. Total flavonoids from leaves of carya cathayensis ameliorate renal fibrosis via the miR-21/Smad7 signaling pathway[J]. Cell Physiol Biochem, 2018, 49(4): 1551-1563. DOI: 10.1159/000493458.

36.Jia Y, Zheng Z, Guan M, et al. Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells[J]. Exp Mol Med, 2018, 50(5): 1-13. DOI: 10.1038/s12276-0180084-3.

37.Ma Z, Li L, Livingston MJ, et al. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease[J]. J Clin Invest, 2020, 130(9): 5011-5026. DOI: 10.1172/jci135536.

38.Zhong W, Zeng J, Xue J, et al. Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis[J]. Diabetol Metab Syndr, 2020, 12: 33. DOI: 10.1186/s13098-020-00539-x.

39.Yu D, Yang X, Zhu Y, et al. Knockdown of plasmacytoma variant translocation 1 (PVT1) inhibits high glucose-induced proliferation and renal fibrosis in HRMCs by regulating miR-23b-3p/early growth response factor 1 (EGR1)[J]. Endocr J, 2021, 68(5): 519-529. DOI: 10.1507/endocrj.EJ20-0642.

40.Cao L, Qin P, Zhang J, et al. LncRNA PVT1 suppresses the progression of renal fibrosis via inactivation of TGF-β signaling pathway[J]. Drug Des Devel Ther, 2020, 14: 3547-3557. DOI: 10.2147/dddt.s245244.

41.Wang W, Jia YJ, Yang YL, et al. LncRNA GAS5 exacerbates renal tubular epithelial fibrosis by acting as a competing endogenous RNA of miR-96-5p[J]. Biomed Pharmacother, 2020, 121: 109411. DOI: 10.1016/j.biopha.2019.109411.

42.Wang Z, Zhang B, Chen Z, et al. The long noncoding RNA myocardial infarction-associated transcript modulates the epithelial-mesenchymal transition in renal interstitial fibrosis[J]. Life Sci, 2020, 241: 117187. DOI: 10.1016/j.lfs.2019.117187.

43.Zhou SG, Zhang W, Ma HJ, et al. Silencing of LncRNA TCONS_00088786 reduces renal fibrosis through miR-132[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1): 166-173. DOI: 10.26355/eurrev_201801_14114.

44.Ge Y, Wang J, Wu D, et al. lncRNA NR_038323 suppresses renal fibrosis in diabetic nephropathy by targeting the miR-324-3p/DUSP1 axis[J]. Mol Ther Nucleic Acids, 2019, 17: 741-753. DOI: 10.1016/j.omtn.2019.07.007.

45.Li A, Peng R, Sun Y, et al. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling[J]. Cell Death Dis, 2018, 9(5): 461. DOI: 10.1038/s41419-018-0527-8.